美国布鲁克海文仪器公司上海代表处
访问手机展位
留言咨询
(我们会第一时间联系您)
关闭
留言类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
(请留下您的联系方式,以便工作人员及时与您联系!)
认证信息
金牌会员 第 7
名 称:美国布鲁克海文仪器公司上海代表处
认 证:工商信息已核实
访问量:414299
手机网站
扫一扫,手机访问更轻松
公司品牌
品牌传达企业理念
公司动态
Influence of polyamide membrane surface chemistry on gypsum scaling behavior

美国布鲁克海文仪器公司上海代表处  2018-11-29  点击1404次

a    Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA

b    Department of Chemical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA

 

摘要:Mineral scaling of thin-film composite desalination membranes is affected by the surface chemistry and roughness of the membrane polyamide selective layer, but the relative contributions of these surface properties to scaling is unknown. We studied the influence of differences in polyamide surface chemistry on gypsum (calcium sulfate dihydrate) scaling of thin-film composite membranes, independent of surface roughness, with the goal of improving scaling resistance through changes to membrane surface chemistry. Smooth polyamide films and thin-film composite membranes were created using a molecular layer-by-layer deposition technique, and the surface chemistry of the polyamide films was enriched with amine or carboxyl functional groups by varying the final monomer deposition step in the layer-by-layer assembly process. Polyamide films and composite membranes with different surface chemistry were subjected to gypsum scaling by both homogeneous and heterogeneous nucleation mechanisms. Results from quartz crystal microbalance experiments and dynamic membrane scaling tests show that differences in the polyamide surface chemistry do not influence long-term gypsum scaling behavior. We conclude that hydrodynamic conditions have a greater effect than differences in surface chemistry on the gypsum scaling behavior of polyamide thin-film composite membranes.